Calibrated BOLD fMRI in Disease: Applications to Aging and HIV

Beau M. Ances, MD, PhD, MSc
Assistant Professor
Department of Neurology
Washington University in St. Louis
29 June 2009
Chicago, USA
Disclosure of Interest

Research Support
1. National Institutes of Health- National Institute of Mental Health (NIMH)
2. Dana Foundation
3. Alzheimer’s Disease Research Center

Speakers Bureau
None

Clinical Trials
Biogen

Consultant
None

Objective: To examine the role of functional magnetic resonance imaging (fMRI) in aging and HIV

I own no stocks or equity in any pharmaceutical company
Bad: What does conventional BOLD fMRI measure?

Ugly: What parameters should we consider when using fMRI in disease states?

Good: Can a calibrated BOLD fMRI be helpful?
 • Lessons learned from healthy aging and neuroHIV

Future: What is the role of multi-modal imaging
Conventional Blood Oxygen Level Dependent (BOLD) Reflects CBF, CBV, and CMRO$_2$ Changes

Buxton et al., *MRI*, 2007
Limitations of Conventional BOLD fMRI in disease states

- Magnitude of BOLD response ≠ quantitative measure of underlying neural activity, signaling, metabolism, or cerebral blood flow

Iannetti and Wise, MRI, 2007
Is There a Role for Calibrated BOLD?
Arterial Spin Labeling (ASL) Measures CBF

1: Tag by Magnetic Inversion

2: Control

Control - Tag \propto CBF (mL/100mL/min)
Calibrated BOLD fMRI Calculates Functional CMRO$_2$ Changes

- Simultaneously measure CBF and BOLD.
- Mild hypercapnia (5%) raises CBF but not CMRO$_2$
Stimuli Activate Lenticular Nuclei (LN) and Visual Cortex (VC)
Calibrated BOLD Calculations

\[
\frac{\Delta S}{S_0} = M \left[1 - \left(\frac{CBF}{CBF_0} \right)^{\alpha - \beta} \left(\frac{CMRO_{O_2}}{CMRO_{O_20}} \right)^{\beta} \right]
\]

- **M**: Scaling factor that represents maximum achievable “ceiling” BOLD signal
- **n**: CBF/CMRO$_2$ coupling parameter

\[
n = \frac{\% \Delta CBF}{\% \Delta CMRO_{O_2}}
\]

Davis et al., PNAS, 1998
Calibrated BOLD in Healthy Controls

- Reproducibility
- Comparison between different brain regions
- Effects of “normal” aging
Reproducibility Between 1st and 2nd Day in Healthy Controls in the VC

![Graph showing functional changes in CBF and BOLD, and CMRO\textsubscript{2} changes.](image)

Leontiev et al., *NeuroImage*, 2007

(n=10)
Healthy Controls Have Comparable Intra-subject but Not Total Variability in the VC

Coefficient of Variation (CV)- a normalized measure of dispersion of a probability distribution.

\[CV = \left(\frac{\sigma_i}{x_{avg}} \right)^*(100\%), \text{ where } \hat{\sigma}_i = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} \]

and \(n \) = number of sessions compared

CV allows for comparison amongst different magnitudes (i.e. BOLD (1–2%) vs CBF (30–40%) vs CMRO2 (10-20%)).
CBF/CMRO$_2$ Coupling in the VC and LN are Different

(N=13 subjects)
Effects of Aging in the VC Using Calibrated BOLD

- Older = > 50 years old (n=9)
- Younger = < 35 years old (n=10)
Calibrated BOLD Within in a Disease State (HIV)
Pathophysiology of HIV Associated Neurocognitive Disorders (HAND)

Modified from Kaul et al. *Nature*, 2001
HAND Consists of a Clinical Triad

- **Cognition**
 - Memory Loss
 - Concentration
 - Mental Slowing
 - Comprehension

- **Behavior**
 - Apathy
 - “Depression”
 - Agitation, Mania

- **Motor**
 - Unsteady Gait
 - Poor Coordination
 - Tremor
Reproducibility Between 1st and 2nd Day in HIV+ Subjects in the VC

Functional Changes in CBF (%)

![Graph showing functional changes in CBF on Day 1 and Day 2 with data points and a trend line.]

Functional Changes in BOLD (%)

![Graph showing functional changes in BOLD on Day 1 and Day 2 with data points and a trend line.]

CMRO\textsubscript{2} Changes (%)

![Graph showing CMRO\textsubscript{2} changes on Day 1 and Day 2 with data points and a trend line.]

Ances et al. Brain 2009 Poster #263
Functional Changes in BOLD May Not Distinguish HIV+ Patients

“A thought too BOLD, a dream too wild”

Ralph Waldo Emerson, 1837

* = p < 0.05

<table>
<thead>
<tr>
<th>Region</th>
<th>HIV-</th>
<th>HIV+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenticular Nuclei</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Motor Hand Region</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Visual Cortex</td>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>
To BOLDly Go Not Alone Into the Future
Baseline CBF Can Assist in Disease State Diagnosis

Sensitivity of 88% (29/33)
Specificity of 88% (23/26)

Significant decreases in baseline CBF in AD (n=17) compared to controls (n=11)

Ances et al., Neurology, in press

Alsop et al., Ann Neurol, 2000
Aging and HIV: A Strain on the Brain

- Functional CBF changes for visual stimulation increased with age and HIV infection.
- No interaction was seen.
- HIV infection was equivalent to 15 years of brain aging

Ances et al. Brain 2009
Oral- BR-O05 Functional Brain Imaging
Acknowledgements

The Research Participants

♦ WUSTL: Alzheimer’s Disease Research Center (ADRC)
 • John Morris, MD
 • David Holtzman, MD, PhD
 • Jon Christianson, PhD
 • Trish Aldea
 • Dan Marcus, PhD

♦ Neuroimaging Laboratory (NIL)
 • Mark Mintun, MD
 • Avi Snyder, MD
 • Tammie Benzinger, MD, PhD

♦ Ances Bioimaging Lab (ABL)
 • Huiling Peng, PhD
 • Jewell Thomas
 • Jasmine Taylor
 • Patrick Rich
 • Olivia Knowles
 • David Lesko

♦ WUSTL: AIDS Clinical Trail Unit (ACTU)
 • David Clifford, MD
 • Robert Paul, PhD
 • Neva Parker
Thank you for your attention

Ances Bioimaging Laboratory (ABL) at Washington University in St. Louis

http://neuro.wustl.edu/research/researchlabs/anceslaboratory.htm

Please contact with questions or possible collaborations:

bances@wustl.edu
(314) 747-8423